ประวัติของเลขศูนย์

                    0 คือจำนวนเต็มที่อยู่ก่อนหน้า 1 ในระบบส่วนใหญ่ การใช้ 0 เริ่มขึ้นมาก่อนที่จะมีการยอมรับแนวคิดเกี่ยวกับจำนวนติดลบ 0 เป็นจำนวนคู่  ไม่เป็นทั้งจำนวนบวกหรือจำนวนลบ นิยามบางอย่างกำหนดว่า 0 ก็เป็นจำนวนธรรมชาติเช่นกัน ซึ่งทำให้จำนวนธรรมชาติไม่จำเป็นว่าจะต้องเป็นจำนวนบวก

ศูนย์คือจำนวนที่บ่งบอกปริมาณของสิ่งที่นับได้ในเซตว่าง อาจหมายถึงไม่มีสมาชิกอยู่ในเซต ตัวอย่างเช่น ถ้ามีจำนวนคนเท่ากับศูนย์ ก็เทียบเท่ากับว่าไม่มีคนอยู่เลย หรือสิ่งของที่มีน้ำหนักเท่ากับศูนย์ ซึ่งก็แปลว่าไม่มีน้ำหนัก ถ้าความแตกต่างของจำนวนสิ่งของสองกองเป็นศูนย์ หมายความว่าสิ่งของสองกองนี้มีจำนวนเท่ากันหรือไม่แตกต่าง เป็นต้น ก่อนที่จะนับสิ่งใด ๆ ผลของการนับจะถูกสมมติให้เป็นศูนย์ในตอนเริ่มต้น นั่นหมายความว่ายังไม่ได้นับ และเมื่อนับสิ่งของชิ้นแรกไปแล้ว ผลของการนับจึงจะเป็นหนึ่ง

กำเนิดศูนย์

ชาวบาบิโลนในตอนนั้นยังไม่ใช้เลข 0 แต่ใช้การเว้นช่องว่างในจำนวน แต่ก็ยังมีปัญหาเพราะการเว้นวรรคอาจทำให้สับสน ดังนั้นนักคณิตศาสตร์ของชาวบาบิโลนจึงได้คิดสัญลักษณ์ขึ้นมาแทน ไม่ใช่ช่องว่างอีกต่อไป สัญลักษณ์ของบาบิโลนนี้ทำหน้าที่ระบุตำแหน่งได้ดี โดยจะพบเฉพาะกลางตัวเลขเท่านั้น จะไม่พบว่าอยู่หน้าและหลัง เลขศูนย์ของบาบิโลนยังคงแตกต่างจากศูนย์ในปัจจุบันคือเป็นเพียงสัญลักษณ์ กว่าพันปีให้หลังชาวมายาจึงคิดเลข 0 ขึ้น ความแตกต่างจากสัญลักษณ์ของชาวบาบิโลนคือ เลขศูนย์ของมายามีอยู่จริงไม่ใช่เป็นเพียงสัญลักษณ์ จากหลักฐานที่ว่าชาวมายาเรียกวันแรกของเดือนว่าวันที่ 0 เรียกวันสุดท้ายของเดือนว่าวันที่ 19 (หนึ่งเดือนมี 20 วัน) อาณาจักรมายาอยู่ไกลจากยุโรปมาก กว่ายุโรปจะรู้จักกับชาวมายาก็ผ่านไปถึงคริสต์ศวรรษที่ 16

ในทางคณิตศาสตร์

แม้ว่าโดยทั่วไปจะถือว่าศูนย์ไม่มีค่าในเชิงปริมาณ แต่มีคุณสมบัติในเชิงคำนวณหลายประการด้วยกัน หากไม่มีเลขศูนย์ การคำนวณจะทำได้ยาก คุณสมบัติโดยทั่วไปของศูนย์ มีดังนี้ เมื่อ a เป็นจำนวนใดๆ

  1. a (0) = 0
  2. a+0 = a
  3. a-0 = a
  4. 0 ไม่สามารถเป็นตัวหารของจำนวนใดๆได้
  5. 0 ไม่สามารถหาตัวประกอบได้

ใส่ความเห็น

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / เปลี่ยนแปลง )

Twitter picture

You are commenting using your Twitter account. Log Out / เปลี่ยนแปลง )

Facebook photo

You are commenting using your Facebook account. Log Out / เปลี่ยนแปลง )

Google+ photo

You are commenting using your Google+ account. Log Out / เปลี่ยนแปลง )

Connecting to %s

%d bloggers like this: